If $f\colon R\rightarrow R$ is defined by $f(x)=\begin{cases}{\frac{x+2}{{x}^2+3x+2}} & {,\, if\, x\, \in R-\{-1,-2\}} \\ {-1} & {,if\, x=-2} \\ {0} & {,if\, x=-1}\end{cases}$ , then f(x) is continuous on the set
Let $g:\mathbb{R}\rightarrow \mathbb{R}$ and $h:\mathbb{R}\rightarrow \mathbb{R}$, be two functions such that $h(x) = sgn(g(x))$. Then select
which of the following is not true?( $\mathbb{R}$ denotes the set of all real numbers, sgn stands for
signum function)